57 research outputs found

    Underwater Fish Detection with Weak Multi-Domain Supervision

    Full text link
    Given a sufficiently large training dataset, it is relatively easy to train a modern convolution neural network (CNN) as a required image classifier. However, for the task of fish classification and/or fish detection, if a CNN was trained to detect or classify particular fish species in particular background habitats, the same CNN exhibits much lower accuracy when applied to new/unseen fish species and/or fish habitats. Therefore, in practice, the CNN needs to be continuously fine-tuned to improve its classification accuracy to handle new project-specific fish species or habitats. In this work we present a labelling-efficient method of training a CNN-based fish-detector (the Xception CNN was used as the base) on relatively small numbers (4,000) of project-domain underwater fish/no-fish images from 20 different habitats. Additionally, 17,000 of known negative (that is, missing fish) general-domain (VOC2012) above-water images were used. Two publicly available fish-domain datasets supplied additional 27,000 of above-water and underwater positive/fish images. By using this multi-domain collection of images, the trained Xception-based binary (fish/not-fish) classifier achieved 0.17% false-positives and 0.61% false-negatives on the project's 20,000 negative and 16,000 positive holdout test images, respectively. The area under the ROC curve (AUC) was 99.94%.Comment: Published in the 2019 International Joint Conference on Neural Networks (IJCNN-2019), Budapest, Hungary, July 14-19, 2019, https://www.ijcnn.org/ , https://ieeexplore.ieee.org/document/885190

    Data-Efficient Classification of Birdcall Through Convolutional Neural Networks Transfer Learning

    Full text link
    Deep learning Convolutional Neural Network (CNN) models are powerful classification models but require a large amount of training data. In niche domains such as bird acoustics, it is expensive and difficult to obtain a large number of training samples. One method of classifying data with a limited number of training samples is to employ transfer learning. In this research, we evaluated the effectiveness of birdcall classification using transfer learning from a larger base dataset (2814 samples in 46 classes) to a smaller target dataset (351 samples in 10 classes) using the ResNet-50 CNN. We obtained 79% average validation accuracy on the target dataset in 5-fold cross-validation. The methodology of transfer learning from an ImageNet-trained CNN to a project-specific and a much smaller set of classes and images was extended to the domain of spectrogram images, where the base dataset effectively played the role of the ImageNet.Comment: Accepted for IEEE Digital Image Computing: Techniques and Applications, 2019 (DICTA 2019), 2-4 December 2019 in Perth, Australia, http://dicta2019.dictaconference.org/index.htm

    Three-Body Models of Electron-Hydrogen Ionization

    Get PDF
    In this paper, we report calculations of electron-hydrogen ionization whereby the final-state wave Function is approximated by recently reported analytical three-body wave functions. In a first model we use the wave function of Alt and Mukhamedzhanov [Phys. Rev. A 47, 2004 (1993)], and in a second model we use the wave function of Berakdar [Phys. Rev. A 53, 2314 (1996)]

    Estimating mass of harvested Asian seabass Lates calcarifer from images

    Get PDF
    Total of 1072 Asian seabass or barramundi (Lates calcarifer) were harvested at two different locations in Queensland, Australia. Each fish was digitally photographed and weighed. A subsample of 200 images (100 from each location) were manually segmented to extract the fish-body area (S in cm2), excluding all fins. After scaling the segmented images to 1mm per pixel, the fish mass values (M in grams) were fitted by a single-factor model ( M=aS1.5 , a=0.1695 ) achieving the coefficient of determination (R2) and the Mean Absolute Relative Error (MARE) of R2=0.9819 and MARE=5.1% , respectively. A segmentation Convolutional Neural Network (CNN) was trained on the 200 hand-segmented images, and then applied to the rest of the available images. The CNN predicted fish-body areas were used to fit the mass-area estimation models: the single-factor model, M=aS1.5 , a=0.170 , R2=0.9819 , MARE=5.1% ; and the two-factor model, M=aSb , a=0.124 , b=0.155 , R2=0.9834 , MARE=4.5

    A realistic fish-habitat dataset to evaluate algorithms for underwater visual analysis

    Get PDF
    Visual analysis of complex fish habitats is an important step towards sustainable fisheries for human consumption and environmental protection. Deep Learning methods have shown great promise for scene analysis when trained on large-scale datasets. However, current datasets for fish analysis tend to focus on the classification task within constrained, plain environments which do not capture the complexity of underwater fish habitats. To address this limitation, we present DeepFish as a benchmark suite with a large-scale dataset to train and test methods for several computer vision tasks. The dataset consists of approximately 40 thousand images collected underwater from 20 habitats in the marine-environments of tropical Australia. The dataset originally contained only classification labels. Thus, we collected point-level and segmentation labels to have a more comprehensive fish analysis benchmark. These labels enable models to learn to automatically monitor fish count, identify their locations, and estimate their sizes. Our experiments provide an in-depth analysis of the dataset characteristics, and the performance evaluation of several state-of-the-art approaches based on our benchmark. Although models pre-trained on ImageNet have successfully performed on this benchmark, there is still room for improvement. Therefore, this benchmark serves as a testbed to motivate further development in this challenging domain of underwater computer vision

    Individual minke whale recognition using deep learning convolutional neural networks

    Get PDF
    The only known predictable aggregation of dwarf minke whales (Balaenoptera acutorostrata subsp.) occurs in the Australian offshore waters of the northern Great Barrier Reef in May-August each year. The identification of individual whales is required for research on the whales’ population characteristics and for monitoring the potential impacts of tourism activities, including commercial swims with the whales. At present, it is not cost-effective for researchers to manually process and analyze the tens of thousands of underwater images collated after each observation/tourist season, and a large data base of historical non-identified imagery exists. This study reports the first proof of concept for recognizing individual dwarf minke whales using the Deep Learning Convolutional Neural Networks (CNN).The “off-the-shelf” Image net-trained VGG16 CNN was used as the feature-encoder of the perpixel sematic segmentation Automatic Minke Whale Recognizer (AMWR). The most frequently photographed whale in a sample of 76 individual whales (MW1020) was identified in 179 images out of the total 1320 images provided. Training and image augmentation procedures were developed to compensate for the small number of available images. The trained AMWR achieved 93% prediction accuracy on the testing subset of 36 positive/MW1020 and 228 negative/not-MW1020 images, where each negative image contained at least one of the other 75 whales. Furthermore on the test subset, AMWR achieved 74% precision, 80% recall, and 4% false-positive rate, making the presented approach comparable or better to other state-of-the-art individual animal recognition results

    Age‐ and sex‐dependent variation in relatedness corresponds to reproductive skew, territory inheritance and workload in cooperatively breeding cichlids

    Get PDF
    Kin selection plays a major role in the evolution of cooperative systems. However, many social species exhibit complex within-group relatedness structures, where kin selection alone cannot explain the occurrence of cooperative behavior. Understanding such social structures is crucial to elucidate the evolution and maintenance of multi-layered cooperative societies. In lamprologine cichlids, intragroup relatedness seems to correlate positively with reproductive skew, suggesting that in this clade dominants tend to provide reproductive concessions to unrelated subordinates to secure their participation in brood care. We investigate how patterns of within-group relatedness covary with direct and indirect fitness benefits of cooperation in a highly social vertebrate, the cooperatively breeding, polygynous lamprologine cichlid Neolamprologus savoryi. Behavioral and genetic data from 43 groups containing 578 individuals show that groups are socially and genetically structured into subgroups. About 17% of group members were unrelated immigrants, and average relatedness between breeders and brood care helpers declined with helper age due to group membership dynamics. Hence the relative importance of direct and indirect fitness benefits of cooperation depends on helper age. Our findings highlight how both direct and indirect fitness benefits of cooperation and group membership can select for cooperative behavior in societies comprising complex social and relatedness structures

    Automatic segmentation of kidney and liver tumors in CT images

    Get PDF
    Automatic segmentation of hepatic lesions in computed tomography (CT) images is a challenging task to perform due to heterogeneous, diffusive shape of tumors and complex background. To address the problem more and more researchers rely on assistance of deep convolutional neural networks (CNN) with 2D or 3D type architecture that have proven to be effective in a wide range of computer vision tasks, including medical image processing. In this technical report, we carry out research focused on more careful approach to the process of learning rather than on complex architecture of the CNN. We have chosen MICCAI 2017 LiTS dataset for training process and the public 3DIRCADb dataset for validation of our method. The proposed algorithm reached DICE score 78.8% on the 3DIRCADb dataset. The described method was then applied to the 2019 Kidney Tumor Segmentation (KiTS-2019) challenge, where our single submission achieved 96.38% for kidney and 67.38% for tumor Dice scores

    Octahedral chalcogenide rhenium cluster complexes with imidazole

    Get PDF
    Reactions of [{Re6Q8}Br6]4−/3− (Q = S, Se) with molten imidazole lead to the formation of two new neutral cluster complexes [{Re6Q8}(imzH)4(imz)2] (imzH = imidazole). The interaction of [{Re6Q8}(imzH)4(imz)2] with hydrohalic acids resulted in cationic complexes [{Re6Q8}(imzH)6]X2 (X = Cl, Br). All compounds were characterised by X-ray single-crystal and powder diffraction analyses, elemental analysis, energy dispersive X-ray and IR spectroscopies. The luminescence of the neutral compounds [{Re6Q8}(imzH)4(imz)2] was also studied
    corecore